UNIT-III

COSETS & NORMAL SUBGROUPS

PROF ANUPAMA GUPTA

1

Outline of Presentation

- Definition & Examples of Cosets
 - Properties of Cosets
 - Index of a Subgroup
 - Order of an element
 - Normal Subgroup
 - Quotient Group

Definition: Let H be a subgroup of a group (G,o). If $a \in G$ then the subset aoH of G defined by

 $aoH = \{ aoh : h \in H \}$

is called a **left coset of H** in G determined by element $a \in G$. Similarly, the subset Hoa of G defined by

Hoa = { hoa : $h \in H$ }

is called a **right coset of H** in G determined by element $a \in G$.

Note that (i) Cosets are not subgroups in general!(ii) If e is the identity of (G,.) and H is subgroup of G then H itself is a left as well as right coset.

(iii) If (G, +) is a group under addition and H is a subgroup of G. For $a \in G$

```
a + H = \{ a + h : h \in H \}
```

 $\mathbf{H} + \mathbf{a} = \{ \mathbf{h} + \mathbf{a} : \mathbf{h} \in \mathbf{H} \}$

are left coset and right coset respectively.

(iv) If (G,o) is an Abelian group then left coset of G is same as right coset of G, i.e., aoH = Hoa

Examples:

 Suppose G= {1, -1, i, -i}is a group under operation multiplication, where i² = -1. H = { 1, -1 } is a subgroup of G. The right coset of H in G are H.1, H.(-1), H(i), H(-i), where H.1 = { 1.1, (-1).1 } = H H.(-1) = { 1.(-1), (-1)(-1) } = { -1, 1 } = H H. i = { 1.i, (-1).i } = { i, -i } H.(-i) = { 1.(-i), (-1)(-i) } = { -i, i }

2. Suppose G = Z, the set of integers is a group under addition.
H = 2Z, the set of even integers is a subgroup of Z
H =
$$\{ 0, \pm 2, \pm 4, \pm 6, \pm 8, \dots, ... \}$$

H + 0 = $\{ h + 0 : h \in H \}$ = $\{ h: h \in H \}$ = H
H + 1 = $\{ h + 1: h \in H \}$ = $\{ \pm 1, \pm 3, \pm 5, \dots \}$
H + 2 = $\{ h + 2 : h \in H \}$ = $\{ 0, \pm 2, \pm 4, \pm 6, \pm 8, \dots, \}$
H + 3 = $\{ h + 3: h \in H \}$ = $\{ \pm 1, \pm 3, \pm 5, \dots, \}$

Hence, the only distinct right cosets of H in G are H and H + 1.

Properties of Cosets: 1.Theorem: If G is an abelian group and $a \in G$ then aH = Ha. **Proof:** Let $x \in Ha$. Then x = ha for some $h \in H$. As $h \in H \Rightarrow h \in G$. Again, $a \in G$ and G is abelian, ha = ah \Rightarrow x = ah for some $h \in H$. $\Rightarrow x \in a H.$ Thus, Ha $\subseteq aH$ Similarly, if $x \in aH$. Then x = ah for some $h \in H$. As $h \in H \Rightarrow h \in G$. Again, $a \in G$ and G is abelian, we have, $ah = ha \Rightarrow x = ha$ for some $h \in H$.

 $\Rightarrow x \in Ha$. Thus, $aH \subseteq Ha$. Hence, aH = Ha.

2.Theorem: If H is a subgroup of G and a, $b \in G$, then

(i)
$$Ha = H$$
 if and only if $a \in H$

- (ii) aH = H if and only if $a \in H$
- (iii) Ha = Hb if only if $ab^{-1} \in H$
- (iv) aH = bH if and only if $a^{-1}b \in H$.

```
Proof: (i) Firstly, suppose Ha = H.
```

```
As H is subgroup of G, so e \in H
```

```
Thus, ea \in Ha \Rightarrow a \in Ha \Rightarrow a \in H.
```

```
Hence, Ha = H \Rightarrow a \in H.
```

Conversely, suppose $a \in H$. To prove Ha = H.

Let
$$x \in Ha \Rightarrow x = ha$$
 for some $h \in H$.
Now, $h, a \in H \Rightarrow ha \in H \Rightarrow x \in H$.
This shows that $x \in Ha \Rightarrow x \in H$
 $\Rightarrow Ha \subseteq H$(eq. 1)
Now, take $x \in H$. Given $a \in H \Rightarrow xa^{-1} \in H$.
 $\Rightarrow (xa^{-1})a \in Ha \Rightarrow x(a^{-1}a) \in Ha$
 $\Rightarrow x.e \in Ha \Rightarrow x \in Ha$
This proves that if $x \in H \Rightarrow x \in Ha \Rightarrow H \subseteq Ha$(eq. 2)
From eq. (1) & (2), we have Ha = H.

(ii) Proof is similar to (i).

(iii) Firstly, suppose Ha = Hb. Now $e \in H$, as H is a subgroup of $G \Rightarrow ea \in Ha$, $a \in Ha$ $\Rightarrow a \in Hb$, since Ha = Hb $\Rightarrow a = hb \quad for \quad h \in H$ $\Rightarrow ab^{-1} = (hb)b^{-1} = h(bb^{-1}) = he = h$ Thus, $ab^{-1} \in H$. **Conversely**, suppose $ab^{-1} \in H$. Therefore, $ab^{-1} = h$ for some $h \in H$. $\Rightarrow (ab^{-1})b = hb \Rightarrow a(b^{-1}b) = hb \Rightarrow a = hb.$ Thus, Ha = H (hb) = (Hh)b = Hb.

(iv) Proof is similar to (iii).

3. Theorem: If H is a subgroup of G and $a, b \in G$, then

(i) $a \in Hb$ if and only if Ha = Hb

(ii) $a \in bH$ if and only if aH = bH.

Proof: (i) Suppose $a \in Hb$.

Then $ab^{-1} \in (Hb)b^{-1}$ $\Rightarrow a b^{-1} \in H(bb^{-1})$ $\Rightarrow ab^{-1} \in He = H$ $\Rightarrow Hab^{-1} = H$ $\Rightarrow (Hab^{-1})b = Hb$ $\Rightarrow Ha (b^{-1}b) = Hb$ $\Rightarrow Hae = Hb \Rightarrow Ha = Hb.$ Conversely, let Ha = Hb. Now $e \in H$, as H is a subgroup of G. $\Rightarrow ea \in Ha \Rightarrow a \in Ha,$ But $Ha = Hb \Rightarrow a \in Hb.$

(ii) Proof is similar to (i)

PROF ANUPAMA GUPTA 12

4. Theorem: Prove that any two right(left) cosets of a subgroup are either disjoint or identical.

Proof: Let H be a subgroup of a group G and $a, b \in G$.

Let Ha and Hb be two right cosets of H in G.

We have to show that either Ha = Hb or $Ha \cap Hb = \emptyset$. **Case 1:** If $Ha \cap Hb = \emptyset$, then nothing to prove. **Case 2:** Let $Ha \cap Hb \neq \emptyset$. We have to show that Ha = Hb. Since $Ha \cap Hb \neq \emptyset$, so there exist at least one element

 $x \in Ha \cap Hb$

 $\Rightarrow x \in Ha \& x \in Hb$

 $\Rightarrow x = h_1 a \text{ for some } h_1 \in H \& x = h_2 b \text{ for some } h_2 \in H$

Thus, $h_1 a = h_2 b \implies h_1^{-1}(h_1 a) = h_1^{-1}(h_2 b)$ $\Rightarrow (h_1^{-1}h_1)a = (h_1^{-1}h_2)b$ \Rightarrow ea = h₃b, where h₃ = $(h_1^{-1}h_2) \in H$ $\Rightarrow a = h_3 b \Rightarrow Ha = H(h_3 b) = (Hh_3)b = Hb$ since $Hh_3 = H$. Hence, Ha = Hb. Thus, if $Ha \cap Hb \neq \emptyset$, then Ha = Hb. So, either Ha = Hb or Ha \cap Hb = \emptyset .

5.Theorem : The group G is equal to the union of all right cosets of H in G.

Proof: Let e,a,b,c,.....be elements of G and H=He, Ha, Hb, Hc, are right cosets of H in G. We have to show that

 $\mathbf{G} = \mathbf{H} \cup \mathbf{Ha} \cup \mathbf{Hb} \cup \mathbf{Hc} \cup \dots \dots$

Let $x \in G$ and xH be a right coset of H in G.

Now $ex \in Hx$, (since $e \in G$ and H is a subgroup of G).

Thus, $x \in Hx \Rightarrow x \in H \cup Ha \cup Hb \cup Hc \cup ... \cup Hx \cup$

Therefore,

Conversely, suppose Ha is any right coset of H in G, where $a \in G$.

Let $x \in Ha \Rightarrow x = ha$ for some $h \in H$. As $H \subset G \Rightarrow h \in G$. Also $a \in G \Rightarrow ha \in G \Rightarrow x \in G$. Therefore, $x \in Ha \Rightarrow x \in G$. Hence, $Ha \subset G \Rightarrow \bigcup_{a \in G} Ha \subset G$. $\Rightarrow H \cup Ha \cup Hb \cup Hc \cup \subset G$ (2) From (1) & (2), we have

 $G = H \cup Ha \cup Hb \cup Hc \cup \dots \dots$

6.Theorem: There is one-to-one correspondence between any two left cosets of H in G.

Proof: Let aH and bH be two left cosets of H in G for $a, b \in H$. Define a map f: aH \rightarrow bH by f(ah) = bh $\forall ah \in aH$. <u>**f** is one-to-one map</u>: Let $x, y \in aH$ such that f(x) = f(y). Since $x, y \in aH \Rightarrow x = ah_1, y = ah_2$ for some $h_1h_2 \in H$. Thus, $f(x) = f(y) \Rightarrow f(ah_1) = f(ah_2) \Rightarrow bh_1 = bh_2$ $\Rightarrow bh_1 = bh_2 \Rightarrow h_1 = h_2$ by left cancellation laws. $\Rightarrow ah_1 = ah_2 \Rightarrow x = y \Rightarrow f$ is one-to-one. **<u>f</u> is onto map:** Let $y \in bH \Rightarrow y = bh$ for some $h \in H$. Suppose x = ah. Since $h \in H \Rightarrow ah \in aH \Rightarrow x \in aH$

where $x = ah \in aH$. Thus, f is onto map. Therefore, f is one-to-one and onto map. Hence, aH and bH are in one-one correspondence.

7.Theorem: There is one-to-one correspondence between any two right cosets of H in G.

Proof: Same as in theorem 6 by using right cosets in place of left cosets.

8.Theorem: There is one-to-one correspondence between the set of all left cosets of H in G and the set of right cosets of H in G.

Proof: Let $L = \{aH: a \in G\}$ and $M = \{Ha: a \in G\}$ Define a map $f: L \to M$ by $f(aH) = Ha^{-1} \forall a \in G$. If $a \in G$ then $a^{-1} \in G$ and hence $Ha^{-1} \in M$, so f is a map from L to M.

<u>**f** is well-defined</u>: Let $a, b \in G$ such that aH = bH $\Leftrightarrow a^{-1}b \in H \Leftrightarrow Ha^{-1}b = H \Leftrightarrow (Ha^{-1}b)b^{-1} = Hb^{-1}$ $\Leftrightarrow Ha^{-1}(bb^{-1}) = Hb^{-1} \Leftrightarrow Ha^{-1}e = Hb^{-1}$ $\Leftrightarrow Ha^{-1} = Hb^{-1} \Leftrightarrow f(aH) = f(bH).$

Thus, f is well-defined.

<u>f</u> is one-one map: The proof follows from reverse steps of f is well-defined.

<u>f</u> is onto map: Let $Ha \in M$ be arbitrarily. As $a \in G \Rightarrow a^{-1} \in G \Rightarrow a^{-1}H \in L$ such that $f(a^{-1}H) = H(a^{-1})^{-1} = Ha$. Thus, f is onto map. Hence, $f: L \to M$ is one-to-one and onto map.

Definition: (Index of Subgroup)

The number of distinct left or right cosets of a subgroup H in group G is called the **index of H in G** and is denoted by [G:H]

Definition: (Order of an element)

Let a be an element of a group G. If there exists a positive integer such that $a^n = e$, then a is said to have finite order and the smallest such positive n such that $a^n = e$ is called the **order of a** and is denoted by O(a).

If there does not exist a positive integer n such that $a^n = e$, then a is said to have **infinite order or the order does not exist**.

If (G, +) is an additive group and a is an element of G then n is called order of an element a if n is a smallest +ve integer such that

$$na = a + a + a + \cdots (n - times) + a = 0$$

Example: In group $(G, +_6)$, the order of each element exists.

Here
$$G = \{0, 1, 2, 3, 4, 5\}.$$

The order of 0, O(0) = 1, O(1) = 6,

O(2) = 3, O(3) = 2, O(4) = 3, O(5) = 6

Lagrange's Theorem:

Statement: The order of each subgroup of a finite group is a divisor of the order of the group.

Proof: Let G be a group of finite order n. Let H be a subgroup of G and let O(H) = m. Suppose $h_1, h_2, h_3, h_4, \dots, h_m$ be m distinct elements of H. Suppose $a \in G$, Ha is a right coset of H in G and we have

$$Ha = \{ h_1 a, h_2 a, h_3 a, \dots, h_m a \}$$

Ha has m distinct elements, (since if

$$h_i a = h_j a, \qquad 1 \le i, j \le m, i \ne j$$

By using right cancellation laws, $h_i = h_i$, a contradiction.)

23

Hence, each right coset of H in G has m distinct members. Any two distinct right cosets of H in G are disjoint. Since G is a finite group, the number of distinct right cosets of H in G will be finite, say equal to k. The union of these k distinct right cosets of H in G is equal to G.

Thus, if $Ha_1, Ha_2, Ha_3, \dots, Ha_k$ are distinct right cosets of H in G, then

$$G = Ha_1 \cup Ha_2 \cup Ha_3 \cup \dots \cup Ha_k$$

Therefore, Number of elements in G

= the number of elements in Ha_1 + number of elements in Ha₂

++ the number of elements in Ha_k

(since two distinct right cosets are mutually disjoint)

This implies that $O(G) = km \Rightarrow n = km \Rightarrow k = \frac{n}{m}$ Thus, m is a divisor of n. This shows that O(H) is a divisor of o(G). Hence, the theorem.

Converse of the Lagrange's theorem is not true.

e.g. The alternating group A_4 of degree 4 is of order 12. But there is no subgroup of A_4 of order 6, although 6 is a divisor of 12.

Definition (Normal Subgroups)

A subgroup H of G is called a **normal subgroup** of G if every left coset of H in G is equal to the corresponding right coset of h in G.

i.e., aH = Ha, for all $a \in G$.

Note that (i) If (G,+) is an additive group and H is called normal subgroup of G iff a + H = H + a for all $a \in G$.

(ii) If G is an Abelian group then every subgroup H of G is a normal subgroup.

(iii) The subgroups {e} and G of any group G are always normal subgroups of G. These are called trivial normal subgroups.

Theorem: A subgroup H of G is a normal subgroup of G if and only if $ghg^{-1} \in H \forall h \in H, g \in G$.

Proof: Firstly, suppose H is a normal subgroup of G.

Therefore, $gH = Hg \forall g \in G$.

Let $h \in H, g \in G$. Then $gh \in gH = Hg \Rightarrow gH \in Hg$.

This implies that $gh = h_1g$ for some $h_1 \in H$

$$\Rightarrow ghg^{-1} = h_1 \in H \Rightarrow ghg^{-1} \in H.$$

Conversely, suppose H is a subgroup of G such that

 $ghg^{-1} \in H \ \forall h \in H, g \in G.$

We have to show that H is a normal subgroup,

i.e., $a H = Ha \forall a \in G$.

Let $a \in G$. Then by given condition

$$aha^{-1} \in H \quad \forall h \in H.$$

Suppose $ah \in aH$. Then

 $aH = (aHa^{-1})a \in Ha \Rightarrow ah \in Ha \Rightarrow aH \subset Ha \dots (1)$ Again, let $b = a^{-1} \in G$.

Then by given condition $bhb^{-1} \in H$.

But $bhb^{-1} = a^{-1}h(a^{-1})^{-1} = a^{-1}ha \in H$.

Let $ha \in Ha$. Then

$$ha = (aa^{-1})ha = a(a^{-1}ha) \in a H$$
$$\Rightarrow ha \in a H \Rightarrow Ha \subset a H.....(2)$$

From (1) and (2), we get $aH = Ha \quad \forall a \in G$

Hence, H is a normal subgroup of G.

Theorem: Let H be subgroup of a group G. Then the following are equivalent:

(i) $ghg^{-1} \in H$, $\forall g \in G, h \in H$. (ii) $gHg^{-1} = H$, $\forall g \in G$. (iii) $gH = Hg \quad \forall g \in G$. **Proof:** (i) \Rightarrow (ii) Given $ghg^{-1} \in H$, $\forall g \in G, h \in H$. Let $ghg^{-1} = h_1 \quad \forall h_1 \in H, \Rightarrow gHg^{-1} = H \quad \forall g \in G$. (ii) \Rightarrow (iii) Given $gHg^{-1} = H, \forall g \in G$ $\Rightarrow (gHg^{-1})g = Hg, \forall g \in G$

$$\Rightarrow gH(g^{-1}g) = Hg, \ \forall g \in G$$

$$\Rightarrow gHe = Hg, \ \forall g \in G$$

$$\Rightarrow gH = Hg, \ \forall g \in G$$

(iii)
$$\Rightarrow (i) \quad Given \qquad gH = Hg, \ \forall g \in G$$

$$\Rightarrow g h = h_1g \quad \forall h, h_1 \in H$$

$$\Rightarrow g hg^{-1} = h_1 \in H$$

$$\Rightarrow g hg^{-1} \in H.$$

Hence, the theorem.

Ex: If H is a subgroup of G of index 2 in G then H is normal subgroup of G.

Solu: Let H be a subgroup of G such that [G:H]= 2. Thus, the number of distinct cosets(left or right) of H in G is 2.

We have to show that H is a normal subgroup of G.

It is enough to show that $aH = Ha \forall a \in G$.

Case I: If $a \in H \Rightarrow aH = H = Ha$. Hence, H is a normal subgroup of G.

Case II: If $a \notin H \Rightarrow aH \neq H$, $Ha \neq H$.

Also, [G:H] = 2, $H \cup aH = G = H \cup Ha$

 $\Rightarrow aH = Ha.$

From Case(I) and Case (II), we have $aH = Ha \forall a \in G$. Hence, H is a normal subgroup of G.

Quotient Group

Definition: Let H be normal subgroup of group G.

Consider the set G/H, where

$$G/_H = \{ aH : a \in G \},$$

the set G/H of all the left(right) cosets of H in G. Define an operation of composition as (aH)(bH) = abH.

Then G/H forms a group under the composition and group is known as **Quotient Group**.

Theorem: Let H be normal subgroup of G. Then the set G/H of all the left(right) cosets of H in G forms a group under the composition defined by (aH)(bH) = abH.

Proof: Let H be normal subgroup of group G. Then the set $G/_H = \{ aH : a \in G \}$ For $aH, bH \in G/_H$ Define the composition in $G/_H$ as (aH)(bH) = abH

To show that the above composition is well-defined.

Let a H = cH & bH = dH $\forall c, d \in G$ Now $aH = cH \Rightarrow c^{-1}a \in H \Rightarrow c^{-1}a = h_1 \quad \forall h_1 \in H$ $\Rightarrow a = ch_1 \quad \forall h_1 \in H$

Thus, $aH = cH \Rightarrow a = ch_1 \quad \forall h_1 \in H$. Similarly, $bH = dH \Rightarrow b = dh_2 \quad \forall h_2 \in H$. Hence, the composition is well-defined if (aH)(bH) = (cH)(dH)if abH = cdH if $(ab)(cd)^{-1} \in H$. To show $G/_H$ is a group, let $aH, bH, cH \in G/_H \forall a, b, c \in G$. <u>Closure Property</u>: $aH bH = abH \in G/_H$ since $ab \in G$. Associativity:(aH.bH)cH = (abH)(cH) = (ab)cH = a(bc)H(since $a(bc) = (ab)c \forall a, b, c \in G$) = aH(bcH) = aH(bH.cH).Existence of Identity: Let $e \in G$, $eH \in G/_H$

(aH)(eH) = aeH = aH = eaH = eHaH.Thus, He =H is identity element of $G/_{H}$ <u>Existence of Inverse</u>: For $aH \in G/_H$ we have $a \in G \implies a^{-1} \in G$ $\Rightarrow a^{-1}H \in G/_H$ $(aH)(a^{-1}H) = aa^{-1}H = eH = H = He = a^{-1}aH$ $= (a^{-1}H)(aH)$ Thus, $a^{-1}H$ is the inverse of $aH \in G/_H$ Hence, $G/_H$ forms a group.
